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In this paper a new characterization of smooth normed linear spaces is dis
cussed using the notion of proximal points of a pair of convex sets. It is proved
that a normed linear space is smooth if and only if for each pair of convex sets,
points which are mutually nearest to each other from the respective sets are
proximal.

A normed linear space X is called smooth if each point of the unit sphere
SeX) = {x EO X/II x II = I} has a unique support hyperplane to the closed unit
ball M(X) = {x EO X/Ii x II :S; I}, or equivalently, if to each x EO X, x # 0,
there corresponds a unique Hahn-Banach functional L EO X* satisfying
II L II = 1 and L(x) = Ii xii·

Some of the well-known approximation theoretic characterizations of
smooth normed linear spaces are contained in the following theorem.

THEOREM 1 (cf. Singer [8, pp. 112], Phelps [7, pp. 240), and Cudia [2,
p.93J). The following statements for a normed linear space X are equimlent:

(1) X is smooth.

(2) All a(X*, X)-closed linear subspaces of X*, of a certain fixed finite
codimension m, where 1 :S; m :S; dim x* - 1, are Chebyshev subspaces.

(3) All linear subspaces of X of a certain fixed finite dimension n, where
1 :S; n :S; dim X-I, have the property (U) of unique Hahn-Banach extension
(cf. Phelps [7]).

If x* is strictly convex, then X is smooth and in addition if X is reflexive then
it is well-known that there is a complete duality between smoothness and
strict convexity.

* AMS (MOS) subject classifications (1970). Primary 41A65, 41A50. Key words and
phrases; Smooth norm, Chebyshev subspace, proximal points, GiHeaux-differentiable,
subdifferential.
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In the present paper we discuss a characterization of smooth norm in terms
of proximal points of convex sets. This appears to be new and different from
the other known characterizations of smoothness of a norm in approximation
theory.

Let U, V be a pair of convex sets in a normed linear space X. We call the
points it E U, iJ E V proximal points of the sets U, V if

[I it - iJ II = d(U, V) = inf II u - v !I •
ueU,veV

If the points it E U, iJ E V are proximal, then they are clearly the points
mutually nearest to each other from the respective set. However, the converse
of this statement is in general not true. This is illustrated by the following
examples.

EXAMPLE 1. Let X = 1R2 with the norm !I(Xl , X2)11 = max(J Xl I , I X2 I).
Take U = {(IX, 0)/1 ~ IX ~ 2} and V = {CO, f3)/1 ~ f3 ::::;; 2}. Here d(U, V) = 1
and the proximal points correspond to IX = f3 = 1. For a fixed IXO, 1 ::::;; lXo ~

2, all the points (0, f3), f3 ~ IXOof V are nearest points to the point (lXo , 0) of
U and likewise for a fixed f30 , 1 <; f30 <; 2, all the points (IX, 0), IX <; f30 of U
are nearest points to the point (0, f3o) of V. Thus for any y, 1 <; y ~ 2, the
points (y,O), (0, y) of U, V respectively, are points mutually nearest to each
other from the other set. However, the points corresponding to y = 1 are
the only proximal points. In the same example, if we take U, V as the open
line segments instead of the closed line segments the proximal points, in fact,
do not exist.

EXAMPLE 2. Let X = C[O, 1] with the supremum norm.

Take U = {(l - IX) + IXt/O <; IX <; 1} and V = {f3t/O <; f3 ::::;; I}.
Here d(U, V) = 0 and the proximal points correspond to IX = f3 = 1.

1[(1 - IX) + IXt - f3t I[ = 1 - IX, if IX <; f3
= 1 - f3, if IX > f3.

Thus for any y,O <; y ::::;; 1, the points (1 - y) + yt of U and yt of V are
points mutually nearest to each other from the other set; but the points
corresponding to y = 1 are the only proximal points.

In the preceeding examples the sets U, Vare non-Chebyshev. The following
example illustrates that even for Chebyshev sets U, V, points which are
mutually nearest to each other need not be proximal.

EXAMPLE 3. Let X = 1R2 with the norm
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The norm il . Ii is strictly convex, being the sum of a seminorm and a strictly
convex norm. Let U = {(Xl' 0)1 - 1 ~ Xl :::;;; I} and V = {CO, x2)1 -1 ~

X~ :::;;; I}. Then the sets U, V are Chebyshev for which the points (iX,O),
(0, -iX), -1 ~ iX :::;;; 1 are mutually nearest to each other from the respective
set. However, (0,0), (0,0) are the only proximal points.

Motivated by these examples, we introduce the following property (P) for
a Dormed linear space X.

(P) For each pair U, V of convex sets in X and points ii E U, ii E V, U
being a nearest point of ii in U and ii being a nearest point ofuin V, imply that
ii, [i are proximal points of U, V.

In [1], Cheney and Goldstein proved that (P) holds for a Hilbert space X
when U, V are closed convex sets. In [5], we proved that if X is a normed
space whose dual X* is strictly convex, then (P) holds for X. Here we extend
this result to prove that X is smooth if and only if (P) holds for X. For this
purpose, the following characterization theorem for proximal points is
employed.

THEOREM 2 (cf. [5]). Let U, V be convex sets. Then Ii E U, ii E V are
proximal if and only if there exists an L E x* such that

(1) I: L II = 1,

(2) Re L(u - ii) >°for each u E U,

(3) Re L(v - ii) :::;;; Ofor each v E V,

(4) L(u - v) = [I it - ii II.

The main result of this paper reads as follows.

THEOREM 3. For a normed linear space X the following statements are
equivalent:

(1) X is smooth,

(2) X satisfies property (P),

(3) The norm II . II is Gliteaux-differentiable at each nonzero point of X.

Proof The equivalence of (1) and (3) is a well-known result of Ascoli
Mazur (cf. [3, pp. 447]). In order to prove (1) => (2), let X be smooth and let
U. V be convex sets such that the points it E U, ii E V are mutually nearest to
each other. Then there exist ~,L2 E X* such that II LIII = I~ L 2 II = 1,

Re LI(u) = inf Re LI(u),
UEU

Re L 2(v) = sup Re L 2(v)
VEV
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Llu - v) = LzCu - v) = II u - v II .

Since X is smooth, one has L1 = L 2 and employing the sufficiency part of
Theorem 2 it follows that uE U, V E V are proximal.

It remains to show that (2) =;- (1). Suppose X is not smooth. Then there
exist x E X, x =1= 0 and Lt , L 2 E S(X*), L1 =1= L 2 , such that

ASSERTION. There exists an element IX E X such that 0 < Re L1(IX) <
Re L 2(IX).

Suppose the contrary. Then the half-spaces {x E XjRe L1(x) > O},
{x E XjRe(L2 - LJ(x) > O} have a void intersection. This implies that

cp(X) n !R+2 = 0, where cp : x E X -+ (Re L1(x), Re(L2 - L1)(x)) E !Rz

and
!R+Z = {(~, 'YJ)j~ > 0, 'YJ > O}.

By the separation form of the Hahn-Banach theorem, there exists a hyper
plane H = {(~, 'YJ)jlX~ + fJ'YJ = y} in !Rz such that cp(X) CHand cp(X) n
IR+Z = 0. Hence,

(x EX)

and

IX~ + fJ'YJ > y (without loss of generality)

These two together imply that ex ;;?: 0, fJ ;;?: 0 (not both zero simultaneously)
arid ex Re L1+ fJ Re(L2 - L1) = 0, which contradicts the choice of L1 and
L 2 and establishes the assertion. Now let

A II xii IX
x = Re L

2
(IX) •

Then

Take

U = {u E XjRe L 2(u) ;;?: Lz(x) = II x II}

and

v = {v E VjRe L1(v) = O}.
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Then 0 is a nearest point to x in Vand x is a nearest point to 0 in U. However,
x and 0 are not proximal points of U, V. In fact,

X E U, X - Re LI(x)(x/11 x ID E V

and

:1 x - (x - Re LI(x)(x/11 x 11m = Re LI(x) < II x il .

This establishes the theorem.
Theorem 3 remains valid, with norm replaced by a seminorm. In fact, it

extends to a slightly more general situation. Let X be a Hausdorff locally
convex linear topological space and let X* be its topological dual. If f is a
convex functional defined on X, then the subdifferential offat x is defined as

af(x) = {L E X*/f(x) ;?; f(x) + Re L(x - x), \Ix EX}.

It is well known that iff is finite and continuous at x, then 8f(x) =1= 0 and
that af(x) consists of a single element if and only iffis Gateaux differentiable
at x. Also,fis minimized on a convex set K at x if and only if there exists an
L E af(x) such that Re L(x - x) ;?; 0 for each x E K (cf. [4, Chap. VII]). Now
suppose that f is a continuous sub-linear functional defined on X, i.e., f is a
continuous real-valued function on X satisfying f(XI + X2) ~ f(xl ) + f(x2)
for all Xl' x 2 E X and f(lIx) = N(x) for x E X and ,\ ;?; O. Then the sub
differential offat x is given by af(x) = {L E af(8)/f(x) = Re L(x)}, where f)

denotes the zero vector in X. Using this expression for the subdifferential the
proof of Theorem 3 could be easily adapted to establish the following
theorem.

THEOREM 4. Let X be a Hausdorff locally convex linear topological
space and let f be a continuous sublinear functional defined on X. Then in order
that for arbitrarily given convex sets U, V in X and the points fi E U, V E V, the
two optimality relations

o =1= feu - v) = inf feu - v) = inff(u - v)
UEU VEV

imply the optimality relation

feu - v) = inf feu - v),
UEU ,VEV

it is necessary and sufficient that f be Gateaux differentiable at each point
x E X where f(x) =1= O.
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Note added in proof The author learned recently that the implication (1) =>- (2) of
Theorem 3 was also given in the research report, Distance between two convex sets,
G. Bradley and L. Willner, Report No. 14, Admin. Sciences, Yale University (1969).
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